Search results
Results from the WOW.Com Content Network
The -intercept of () is indicated by the red dot at (=, =). In analytic geometry , using the common convention that the horizontal axis represents a variable x {\displaystyle x} and the vertical axis represents a variable y {\displaystyle y} , a y {\displaystyle y} -intercept or vertical intercept is a point where the graph of a function or ...
Figure 4. Graphing calculator computation of one of the two roots of the quadratic equation 2x 2 + 4x − 4 = 0. Although the display shows only five significant figures of accuracy, the retrieved value of xc is 0.732050807569, accurate to twelve significant figures. A quadratic function without real root: y = (x − 5) 2 + 9.
The x and y coordinates of the point of intersection of two non-vertical lines can easily be found using the following substitutions and rearrangements. Suppose that two lines have the equations y = ax + c and y = bx + d where a and b are the slopes (gradients) of the lines and where c and d are the y-intercepts of the lines.
Given the two red points, the blue line is the linear interpolant between the points, and the value y at x may be found by linear interpolation.. In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points.
A non-vertical line can be defined by its slope m, and its y-intercept y 0 (the y coordinate of its intersection with the y-axis). In this case, its linear equation can be written = +. If, moreover, the line is not horizontal, it can be defined by its slope and its x-intercept x 0. In this case, its equation can be written
The y-intercept point (,) = (,) corresponds to buying only 4 kg of sausage; while the x-intercept point (,) = (,) corresponds to buying only 2 kg of salami. Note that the graph includes points with negative values of x or y , which have no meaning in terms of the original variables (unless we imagine selling meat to the butcher).
b is the y-intercept of the line. x is the independent variable of the function y = f ( x ). In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the ...
Roots and y-intercept in red; Vertex and axis of symmetry in blue; Focus and directrix in pink; Visualisation of the complex roots of y = ax 2 + bx + c: the parabola is rotated 180° about its vertex (orange). Its x-intercepts are rotated 90° around their mid-point, and the Cartesian plane is interpreted as the complex plane (green). [3