Search results
Results from the WOW.Com Content Network
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
The diffusion equation is a parabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles in Brownian motion , resulting from the random movements and collisions of the particles (see Fick's laws of diffusion ).
The self-diffusion coefficient of neat water is: 2.299·10 −9 m 2 ·s −1 at 25 °C and 1.261·10 −9 m 2 ·s −1 at 4 °C. [2] Chemical diffusion occurs in a presence of concentration (or chemical potential) gradient and it results in net transport of mass. This is the process described by the diffusion equation.
Assuming that N particles start from the origin at the initial time t = 0, the diffusion equation has the solution (,) = (). This expression (which is a normal distribution with the mean μ = 0 {\displaystyle \mu =0} and variance σ 2 = 2 D t {\displaystyle \sigma ^{2}=2Dt} usually called Brownian motion B t {\displaystyle B_{t}} ) allowed ...
The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]
The concept of diffusion is widely used in many fields, including physics (particle diffusion), chemistry, biology, sociology, economics, statistics, data science, and finance (diffusion of people, ideas, data and price values). The central idea of diffusion, however, is common to all of these: a substance or collection undergoing diffusion ...
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...
Diffusion flux, the rate of movement of molecules across a unit area (mol·m −2 ·s −1). (Fick's law of diffusion) [7] Volumetric flux, the rate of volume flow across a unit area (m 3 ·m −2 ·s −1). (Darcy's law of groundwater flow) Mass flux, the rate of mass flow across a unit area (kg·m −2 ·s −1). (Either an alternate form of ...