Search results
Results from the WOW.Com Content Network
This equates to the area of the distribution above Z. Example: Find Prob(Z ≥ 0.69). Since this is the portion of the area above Z, the proportion that is greater than Z is found by subtracting Z from 1. That is Prob(Z ≥ 0.69) = 1 − Prob(Z ≤ 0.69) or {{{1}}}.
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
There is no single accepted name for this number; it is also commonly referred to as the "standard normal deviate", "normal score" or "Z score" for the 97.5 percentile point, the .975 point, or just its approximate value, 1.96. If X has a standard normal distribution, i.e. X ~ N(0,1),
Looking up the z-score in a table of the standard normal distribution cumulative probability, we find that the probability of observing a standard normal value below −2.47 is approximately 0.5 − 0.4932 = 0.0068.
where z is the standard score or "z-score", i.e. z is how many standard deviations above the mean the raw score is (z is negative if the raw score is below the mean). The reason for the choice of the number 21.06 is to bring about the following result: If the scores are normally distributed (i.e. they follow the "bell-shaped curve") then
This holds ever more strongly for moves of 4 or more standard deviations. One can compute more precisely, approximating the number of extreme moves of a given magnitude or greater by a Poisson distribution , but simply, if one has multiple 4 standard deviation moves in a sample of size 1,000, one has strong reason to consider these outliers or ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Of all probability distributions over the reals with a specified finite mean and finite variance , the normal distribution (,) is the one with maximum entropy. [29] To see this, let X {\textstyle X} be a continuous random variable with probability density f ( x ) {\textstyle f(x)} .