Search results
Results from the WOW.Com Content Network
If P, then Q. Not Q. Therefore, not P. The first premise is a conditional ("if-then") claim, such as P implies Q. The second premise is an assertion that Q, the consequent of the conditional claim, is not the case. From these two premises it can be logically concluded that P, the antecedent of the conditional claim, is also not the case. For ...
P, as an individual or a class, materially implicates Q, but the relation of Q to P is such that the converse proposition "If Q, then P" does not necessarily have sufficient condition. The rule of inference for sufficient condition is modus ponens, which is an argument for conditional implication: Premise (1): If P, then Q; Premise (2): P
If P, then Q. P. Therefore, Q. The first premise is a conditional ("if–then") claim, namely that P implies Q. The second premise is an assertion that P, the antecedent of the conditional claim, is the case. From these two premises it can be logically concluded that Q, the consequent of the conditional claim, must be the case as well.
material conditional (material implication) implies, if P then Q, it is not the case that P and not Q propositional logic, Boolean algebra, Heyting algebra: is false when A is true and B is false but true otherwise.
The assertion that Q is necessary for P is colloquially equivalent to "P cannot be true unless Q is true" or "if Q is false, then P is false". [9] [1] By contraposition, this is the same thing as "whenever P is true, so is Q". The logical relation between P and Q is expressed as "if P, then Q" and denoted "P ⇒ Q" (P implies Q).
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15. The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
On the other hand, one can affirm with certainty that "if someone does not live in California" (non-Q), then "this person does not live in San Diego" (non-P). This is the contrapositive of the first statement, and it must be true if and only if the original statement is true. Example 2. If an animal is a dog, then it has four legs. My cat has ...
For example, with the predicate P as "x is mortal" and the domain of x as the collection of all humans, () means "a person x in all humans is mortal" or "all humans are mortal". The negation of it is ¬ ∀ x P ( x ) ≡ ∃ x ¬ P ( x ) {\displaystyle \neg \forall xP(x)\equiv \exists x\neg P(x)} , meaning "there exists a person x in all humans ...