Search results
Results from the WOW.Com Content Network
Similarly, pantetheine (a vitamin B5 derivative), a precursor of coenzyme A and thioester-dependent synthesis, can be formed spontaneously under evaporative conditions. [70] Other coenzymes may have existed early on Earth, such as pterins (a derivative of vitamin B9 ), flavins ( FAD , flavin mononucleotide = FMN), and riboflavin (vitamin B2).
Coenzymes Q is a coenzyme family that is ubiquitous in animals and many Pseudomonadota, [10] a group of gram-negative bacteria. The fact that the coenzyme is ubiquitous gives the origin of its other name, ubiquinone. [1] [2] [11] In humans, the most common form of coenzymes Q is coenzyme Q 10, also called CoQ 10 (/ ˌ k oʊ k j uː ˈ t ɛ n ...
Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle.All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate.
Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. [2] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production.
Since coenzymes are chemically changed as a consequence of enzyme action, it is useful to consider coenzymes to be a special class of substrates, or second substrates, which are common to many different enzymes. For example, about 1000 enzymes are known to use the coenzyme NADH. [63]
Pages in category "Coenzymes" The following 35 pages are in this category, out of 35 total. This list may not reflect recent changes. A. Adenosine triphosphate;
Its active form is a coenzyme called thiamine pyrophosphate (TPP), which takes part in the conversion of pyruvate to acetyl coenzyme A in metabolism. [11] Vitamin B 2: Riboflavin: Riboflavin is involved in release of energy in the electron transport chain, the citric acid cycle, as well as the catabolism of fatty acids (beta oxidation). [12 ...
This specificity reflects the distinct metabolic roles of the respective coenzymes, and is the result of distinct sets of amino acid residues in the two types of coenzyme-binding pocket. For instance, in the active site of NADP-dependent enzymes, an ionic bond is formed between a basic amino acid side-chain and the acidic phosphate group of NADP +.