enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbole - Wikipedia

    en.wikipedia.org/wiki/Hyperbole

    Hyperbole (/ h aɪ ˈ p ɜːr b əl i / ⓘ; adj. hyperbolic / ˌ h aɪ p ər ˈ b ɒ l ɪ k / ⓘ) is the use of exaggeration as a rhetorical device or figure of speech. In rhetoric, it is also sometimes known as auxesis (literally 'growth'). In poetry and oratory, it emphasizes, evokes strong feelings, and creates strong impressions. As a ...

  3. Hyperbolic - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic

    Hyperbolic may refer to: of or pertaining to a hyperbola, a type of smooth curve lying in a plane in mathematics Hyperbolic geometry, a non-Euclidean geometry; Hyperbolic functions, analogues of ordinary trigonometric functions, defined using the hyperbola; of or pertaining to hyperbole, the use of exaggeration as a rhetorical device or figure ...

  4. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    The inverse statement is also true and can be used to define a ... Then the area of the hyperbolic sector is the area of the triangle minus the curved region past ...

  5. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The hyperbolic functions take a real argument called a hyperbolic angle. The magnitude of a hyperbolic angle is the area of its hyperbolic sector to xy = 1. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

  6. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    This parameter t is the hyperbolic angle, which is the argument of the hyperbolic functions. One finds an early expression of the parametrized unit hyperbola in Elements of Dynamic (1878) by W. K. Clifford .

  7. Hyperbolic angle - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_angle

    The curve represents xy = 1. A hyperbolic angle has magnitude equal to the area of the corresponding hyperbolic sector, which is in standard position if a = 1. In geometry, hyperbolic angle is a real number determined by the area of the corresponding hyperbolic sector of xy = 1 in Quadrant I of the Cartesian plane.

  8. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

  9. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.