Search results
Results from the WOW.Com Content Network
Vector calculus or vector analysis is a branch of mathematics concerned with the differentiation and integration of vector fields, primarily in three-dimensional Euclidean space, . [1] The term vector calculus is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration.
In linear algebra, a column vector with elements is an matrix [1] consisting of a single column of entries, for example, = [].. Similarly, a row vector is a matrix for some , consisting of a single row of entries, = […]. (Throughout this article, boldface is used for both row and column vectors.)
A free vector is a vector quantity having an undefined support or region of application; it can be freely translated with no consequences; a displacement vector is a prototypical example of free vector. Aside from the notion of units and support, physical vector quantities may also differ from Euclidean vectors in terms of metric.
In the physical chemistry study of polymers, the end-to-end vector is the vector that points from one end of a polymer to the other end. If each monomer unit in a polymer is represented by a point in space, the translation vectors r → i {\displaystyle {\vec {r}}_{i}} connect between these points.
However, vectors may also have elements that allow them to be maintained in another organism such as yeast, plant or mammalian cells, and these vectors are called shuttle vectors. Such vectors have bacterial or viral elements which may be transferred to the non-bacterial host organism, however other vectors termed intragenic vectors have also ...
Geometrically, vectors are multi-dimensional quantities with magnitude and direction, often pictured as arrows. A linear transformation rotates, stretches, or shears the vectors upon which it acts. Its eigenvectors are those vectors that are only stretched, with neither rotation nor shear.
In mathematics and physics, vector notation is a commonly used notation for representing vectors, [1] [2] which may be Euclidean vectors, or more generally, members of a vector space. For denoting a vector, the common typographic convention is lower case, upright boldface type, as in v .
The space of solutions is the affine subspace x + V where x is a particular solution of the equation, and V is the space of solutions of the homogeneous equation (the nullspace of A). The set of one-dimensional subspaces of a fixed finite-dimensional vector space V is known as projective space ; it may be used to formalize the idea of parallel ...