Ad
related to: geometric progression sample problems with solutions 5th year notes freeeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Printable Workbooks
Download & print 300+ workbooks
written & reviewed by teachers.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Educational Songs
Explore catchy, kid-friendly tunes
to get your kids excited to learn.
- Printable Workbooks
Search results
Results from the WOW.Com Content Network
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
This series is called balanced if a 1... a k + 1 = b 1...b k q. This series is called well poised if a 1 q = a 2 b 1 = ... = a k + 1 b k, and very well poised if in addition a 2 = −a 3 = qa 1 1/2. The unilateral basic hypergeometric series is a q-analog of the hypergeometric series since
Doubling the cube, also known as the Delian problem, is an ancient [a] [1]: 9 geometric problem. Given the edge of a cube , the problem requires the construction of the edge of a second cube whose volume is double that of the first.
In geometry, a dissection problem is the problem of partitioning a geometric figure (such as a polytope or ball) into smaller pieces that may be rearranged into a new figure of equal content. In this context, the partitioning is called simply a dissection (of one polytope into another).
As of 2020, the longest known arithmetic progression of primes has length 27: [4] 224584605939537911 + 81292139·23#·n, for n = 0 to 26. (23# = 223092870) As of 2011, the longest known arithmetic progression of consecutive primes has length 10. It was found in 1998. [5] [6] The progression starts with a 93-digit number
Ad
related to: geometric progression sample problems with solutions 5th year notes freeeducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch