Search results
Results from the WOW.Com Content Network
Alcohol oxidation is a collection of oxidation reactions in organic chemistry that convert alcohols to aldehydes, ketones, carboxylic acids, and esters. The reaction mainly applies to primary and secondary alcohols. Secondary alcohols form ketones, while primary alcohols form aldehydes or carboxylic acids. [1] A variety of oxidants can be used.
Jones reagent will convert primary and secondary alcohols to aldehydes and ketones, respectively. Depending on the reaction conditions, the aldehydes may then be converted to carboxylic acids. For oxidations to the aldehydes and ketones, two equivalents of chromic acid oxidize three equivalents of the alcohol:
Reagents useful for the transformation of primary alcohols to aldehydes are normally also suitable for the oxidation of secondary alcohols to ketones. These include Collins reagent and Dess-Martin periodinane. The direct oxidation of primary alcohols to carboxylic acids can be carried out using potassium permanganate or the Jones reagent.
The order of addition of the reagents of the Mitsunobu reaction can be important. Typically, one dissolves the alcohol, the carboxylic acid, and triphenylphosphine in tetrahydrofuran or other suitable solvent (e.g. diethyl ether), cool to 0 °C using an ice-bath, slowly add the DEAD dissolved in THF, then stir at room temperature for several hours.
PCC is used as an oxidant.In particular, it has proven to be highly effective in oxidizing primary and secondary alcohols to aldehydes and ketones, respectively.The reagent is more selective than the related Jones' Reagent, so there is little chance of over-oxidation to form carboxylic acids if acidified potassium permanganate is used as long as water is not present in the reaction mixture.
The Koch reaction is an organic reaction for the synthesis of tertiary carboxylic acids from alcohols or alkenes and carbon monoxide.Some commonly industrially produced Koch acids include pivalic acid, 2,2-dimethylbutyric acid and 2,2-dimethylpentanoic acid. [1]
Also, solid-supported reagents such as phosphate-buffered silica gel supported by potassium permanganate and polymer-supported chlorite have been prepared and used to convert aldehydes to carboxylic acid without having to do conventional work-up procedures. The reaction involves the product to be trapped on silica gel as their potassium salts.
Cyanuric chloride is employed as a reagent in organic synthesis for the conversion of alcohols into alkyl chlorides, [8] and carboxylic acids into acyl chlorides: [9]. It is also used as a dehydrating agent, e.g. in the conversion of amides to nitriles, [10] and for the activation of carboxylic acids for reduction to alcohols.