Search results
Results from the WOW.Com Content Network
This is a degenerate uniform polyhedron rather than a uniform polyhedron, because some pairs of edges coincide. Not included are: The uniform polyhedron compounds. 40 potential uniform polyhedra with degenerate vertex figures which have overlapping edges (not counted by Coxeter); The uniform tilings (infinite polyhedra)
Coxeter, Longuet-Higgins & Miller (1954) define uniform polyhedra to be vertex-transitive polyhedra with regular faces. They define a polyhedron to be a finite set of polygons such that each side of a polygon is a side of just one other polygon, such that no non-empty proper subset of the polygons has the same property.
image of polyhedron; name of polyhedron; alternate names (in brackets) Wythoff symbol; Numbering systems: W - number used by Wenninger in polyhedra models, U - uniform indexing, K - Kaleido indexing, C - numbering used in Coxeter et al. 'Uniform Polyhedra'. Number of vertices V, edges E, Faces F and number of faces by type.
Quasi-regular polyhedra Johnson solids (92, convex, non-uniform) Bipyramids Pyramids Stellations: Stellations: Polyhedral compounds Deltahedra (Deltahedra, equilateral triangle faces) Snub polyhedra (12 uniform, not mirror image) Zonohedron (Zonohedra, faces have 180°symmetry) Dual polyhedron: Self-dual polyhedron Catalan solid
This category was created to reference the full set of 75 nonprismatic uniform polyhedra, as well as prismatic forms. It is a subset of Category:Polyhedra.. It is a union of 5 Platonic solids, 4 Kepler–Poinsot solids, 13 Archimedean solids, and the infinite prismatic sets in Prismatoid polyhedra, and adds 53 non-convex, non-regular uniform polyhedra.
These two uniform polyhedra cannot be generated at all by the Wythoff construction. This is the set of uniform polyhedra commonly described as the "non-Wythoffians". Instead of the triangular fundamental domains of the Wythoffian uniform polyhedra, these two polyhedra have tetragonal fundamental domains.
Quasi-regular polyhedra Johnson solids (92, convex, non-uniform) Bipyramids Pyramids Stellations: Stellations: Polyhedral compounds Deltahedra (Deltahedra, equilateral triangle faces) Snub polyhedra (12 uniform, not mirror image) Zonohedron (Zonohedra, faces have 180°symmetry) Dual polyhedron: Self-dual polyhedron Catalan solid
The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists ... Polyhedral compound and Uniform polyhedron compound.