Search results
Results from the WOW.Com Content Network
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.
In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
This makes () a ring, which has the identity matrix I as identity element (the matrix whose diagonal entries are equal to 1 and all other entries are 0). This ring is also an associative R-algebra. If n > 1, many matrices do not have a multiplicative inverse. For example, a matrix such that all entries of a row (or a column) are 0 does not have ...
Both MATLAB and GNU Octave natively support linear algebra operations such as matrix multiplication, matrix inversion, and the numerical solution of system of linear equations, even using the Moore–Penrose pseudoinverse. [7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator.
An array data structure can be mathematically modeled as an abstract data structure (an abstract array) with two operations get(A, I): the data stored in the element of the array A whose indices are the integer tuple I. set(A, I, V): the array that results by setting the value of that element to V. These operations are required to satisfy the ...
var c = 0.0 // The array input has elements indexed for i = 1 to input.length do // c is zero the first time around. var y = input[i] + c // sum + c is an approximation to the exact sum. (sum,c) = Fast2Sum(sum,y) // Next time around, the lost low part will be added to y in a fresh attempt. next i return sum