Search results
Results from the WOW.Com Content Network
The term "chiral" in general is used to describe the object that is non-superposable on its mirror image. [18] In chemistry, chirality usually refers to molecules. Two mirror images of a chiral molecule are called enantiomers or optical isomers. Pairs of enantiomers are often designated as "right-", "left-handed" or, if they have no bias ...
Many chiral molecules have point chirality, namely a single chiral stereogenic center that coincides with an atom. This stereogenic center usually has four or more bonds to different groups, and may be carbon (as in many biological molecules), phosphorus (as in many organophosphates ), silicon, or a metal (as in many chiral coordination ...
For example, the molecules of cholesteric liquid crystals are randomly positioned but macroscopically they exhibit a helicoidal orientational order. Other examples of structurally chiral materials can be fabricated either as stacks of uniaxial laminas or using sculptured thin films .
Chiral molecules in the receptors in our noses can tell the difference between these things. Chirality affects biochemical reactions, and the way a drug works depends on what kind of enantiomer it is. Many drugs are chiral and it is important that the shape of the drug matches the shape of the cell receptor it is meant to affect.
Chiral purity is a measure of the purity of a chiral drug. Other synonyms employed include enantiomeric excess, enantiomer purity, enantiomeric purity, and optical purity. Optical purity is an obsolete term since today most of the chiral purity measurements are done using chromatographic techniques (not based on optical principles).
Homochirality is a uniformity of chirality, or handedness.Objects are chiral when they cannot be superposed on their mirror images. For example, the left and right hands of a human are approximately mirror images of each other but are not their own mirror images, so they are chiral.
Chiral inversion is the process of conversion of one enantiomer of a chiral molecule to its mirror-image version with no other change in the molecule. [1] [2] [3] [4]Chiral inversion happens depending on various factors (viz. biological-, solvent-, light-, temperature- induced, etc.) and the energy barrier energy barrier associated with the stereogenic element present in the chiral molecule. 2 ...
The chiral fence. Chiral ligands work by asymmetric induction somewhere along the reaction coordinate. The image to the right illustrates how a chiral ligand may induce an enantioselective reaction. The ligand (in green) has C 2 symmetry with its nitrogen, oxygen or phosphorus atoms hugging a central metal atom (in red). In this particular ...