Search results
Results from the WOW.Com Content Network
Download as PDF; Printable version; In other projects ... L-stability is a special ... is the stability function of the method (the stability function of a Runge ...
In mathematics, in the theory of differential equations and dynamical systems, a particular stationary or quasistationary solution to a nonlinear system is called linearly unstable if the linearization of the equation at this solution has the form / =, where r is the perturbation to the steady state, A is a linear operator whose spectrum contains eigenvalues with positive real part.
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...
A cobweb plot, known also as Lémeray Diagram or Verhulst diagram is a visual tool used in the dynamical systems field of mathematics to investigate the qualitative behaviour of one-dimensional iterated functions, such as the logistic map.
A Lyapunov function for an autonomous dynamical system {: ˙ = ()with an equilibrium point at = is a scalar function: that is continuous, has continuous first derivatives, is strictly positive for , and for which the time derivative ˙ = is non positive (these conditions are required on some region containing the origin).
For higher degree polynomials the extra computation involved in this mapping can be avoided by testing the Schur stability by the Schur-Cohn test, the Jury test or the Bistritz test. Necessary condition: a Hurwitz stable polynomial (with real coefficients ) has coefficients of the same sign (either all positive or all negative).
Routh–Hurwitz stability criterion; Vakhitov–Kolokolov stability criterion; Barkhausen stability criterion; Stability may also be determined by means of root locus analysis. Although the concept of stability is general, there are several narrower definitions through which it may be assessed: BIBO stability; Linear stability; Lyapunov stability
If ˙ is negative definite, then the global asymptotic stability of the origin is a consequence of Lyapunov's second theorem. The invariance principle gives a criterion for asymptotic stability in the case when ˙ is only negative semidefinite.