Search results
Results from the WOW.Com Content Network
These are called its trivial zeros. The zeta function is also zero for other values of s, which are called nontrivial zeros. The Riemann hypothesis is concerned with the locations of these nontrivial zeros, and states that: The real part of every nontrivial zero of the Riemann zeta function is 1 / 2 .
The Riemann zeta function ζ(z) plotted with domain coloring. [1] The pole at = and two zeros on the critical line.. The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter ζ (), is a mathematical function of a complex variable defined as () = = = + + + for >, and its analytic continuation elsewhere.
The zeta function values listed below include function values at the negative even numbers (s = −2, −4, etc.), for which ζ(s) = 0 and which make up the so-called trivial zeros. The Riemann zeta function article includes a colour plot illustrating how the function varies over a continuous rectangular region of the complex plane.
It is a statement about the zeros of the Riemann zeta function. Various geometrical and arithmetical objects can be described by so-called global L-functions, which are formally similar to the Riemann zeta-function. One can then ask the same question about the zeros of these L-functions, yielding various generalizations of the Riemann ...
The Riemann hypothesis is concerned with the non-trivial zeros, and states that: The real part of any non-trivial zero of the Riemann zeta function is ½. Thus the non-trivial zeros should lie on the so-called critical line ½ + it with t a real number and i the imaginary unit. The Riemann zeta-function along the critical line is sometimes ...
The real line describes the two-point correlation function of the random matrix of type GUE. Blue dots describe the normalized spacings of the non-trivial zeros of Riemann zeta function, the first 10 5 zeros. In the 1980s, motivated by Montgomery's conjecture, Odlyzko began an intensive numerical study of the statistics of the zeros of ζ(s).
where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...
Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height; Odlyzko, A. (1992), The 10 20-th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and discusses the results in detail.