Search results
Results from the WOW.Com Content Network
Function overloading is usually associated with statically-typed programming languages that enforce type checking in function calls. An overloaded function is a set of different functions that are callable with the same name. For any particular call, the compiler determines which overloaded function to use and resolves this at compile time ...
Covariant return types have been (partially) allowed in the Java language since the release of JDK5.0, [2] so the following example wouldn't compile on a previous release: // Classes used as return types: class A { } class B extends A { } // "Class B is narrower than class A" // Classes demonstrating method overriding: class C { A getFoo ...
Ad hoc polymorphism is a dispatch mechanism: control moving through one named function is dispatched to various other functions without having to specify the exact function being called. Overloading allows multiple functions taking different types to be defined with the same name; the compiler or interpreter automatically ensures that the right ...
The overridden base method must be virtual, abstract, or override. In addition to the modifiers that are used for method overriding, C# allows the hiding of an inherited property or method. This is done using the same signature of a property or method but adding the modifier new in front of it. [6] In the above example, hiding causes the following:
Another example where covariant parameters seem helpful is so-called binary methods, i.e. methods where the parameter is expected to be of the same type as the object the method is called on. An example is the compareTo method: a. compareTo (b) checks whether a comes before or after b in some ordering, but the way to compare, say, two rational ...
The concept of the virtual function solves the following problem: In object-oriented programming, when a derived class inherits from a base class, an object of the derived class may be referred to via a pointer or reference of the base class type instead of the derived class type.
As such, the compiler must also generate "hidden" code in the constructors of each class to initialize a new object's virtual table pointer to the address of its class's virtual method table. Many compilers place the virtual table pointer as the last member of the object; other compilers place it as the first; portable source code works either ...
The compiler builds virtual tables for every virtual or interface method call which is used at run-time to determine the implementation to execute. Also like COM and Java, the Common Language Runtime provides reflection APIs that can make late binding calls. The use of these calls varies by language.