Search results
Results from the WOW.Com Content Network
A much simpler interpolation scheme for approximating the electronic band structure, especially for the d-bands of transition metals, is the parameterized tight-binding method conceived in 1954 by John Clarke Slater and George Fred Koster, [1] sometimes referred to as the SK tight-binding method. With the SK tight-binding method, electronic ...
The Density Functional Based Tight Binding method is an approximation to density functional theory, which reduces the Kohn-Sham equations to a form of tight binding related to the Harris functional. The original [ 1 ] approximation limits interactions to a non-self-consistent two center hamiltonian between confined atomic states.
Tight-binding methods, e.g. a large family of methods known as DFTB, [24] are sometimes classified as semiempirical methods as well. More recent examples include the semiempirical quantum mechanical methods GFNn-xTB (n=0,1,2), which are particularly suited for the geometry, vibrational frequencies, and non-covalent interactions of large ...
The Hubbard model introduces short-range interactions between electrons to the tight-binding model, which only includes kinetic energy (a "hopping" term) and interactions with the atoms of the lattice (an "atomic" potential). When the interaction between electrons is strong, the behavior of the Hubbard model can be qualitatively different from ...
The EAM is related to the second moment approximation to tight binding theory, also known as the Finnis-Sinclair model. These models are particularly appropriate for metallic systems. [2] Embedded-atom methods are widely used in molecular dynamics simulations.
The Rashba model in solids can be derived in the framework of the k·p perturbation theory [12] or from the point of view of a tight binding approximation. [13] However, the specifics of these methods are considered tedious and many prefer an intuitive toy model that gives qualitatively the same physics (quantitatively it gives a poor ...
It is a tight binding code (both orthogonal and non-orthogonal), allowing for multipole charges and electron spin. It also contains Density Functional Theory programs: these were restored to enable clear benchmarking to tight binding simulations, but can be used in their own right.
Optimized effective potential method Linearized augmented-plane-wave method Projector augmented wave method: Electronic band structure; Nearly free electron model Tight binding Muffin-tin approximation k·p perturbation theory Empty lattice approximation GW approximation Korringa–Kohn–Rostoker method