Search results
Results from the WOW.Com Content Network
The quintessentially quantum mechanical uncertainty principle comes in many forms other than position–momentum. The energy–time relationship is widely used to relate quantum state lifetime to measured energy widths but its formal derivation is fraught with confusing issues about the nature of time.
The uncertainty principle implies that, whatever the quantum state, the range of predictions for the electron's position and the range of predictions for its momentum cannot both be narrow. Some quantum states imply a near-certain prediction of the result of a position measurement, but the result of a momentum measurement will be highly ...
Δp x is uncertainty in measured value of momentum, Δt is duration of measurement, v x is velocity of particle before measurement, v′ x is velocity of particle after measurement, ħ is the reduced Planck constant. The measured momentum of the electron is then related to v x, whereas its momentum after the measurement is related to v′ x ...
This relation is now known as Heisenberg's uncertainty principle. When quantities such as position and momentum are mentioned in the context of Heisenberg's matrix mechanics, a statement such as pq ≠ qp does not refer to a single value of p and a single value q but to a matrix (grid of values arranged in a defined way) of values of position ...
[6] According to Heisenberg's uncertainty principle, it is impossible to measure both the momentum and the position of particle B exactly; however, it is possible to measure the exact position of particle A. By calculation, therefore, with the exact position of particle A known, the exact position of particle B can be known.
The general form of wavefunction for a system of particles, each with position r i and z-component of spin s z i. Sums are over the discrete variable s z , integrals over continuous positions r . For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is ...
This statement is known as the uncertainty principle. The uncertainty principle is not only a statement about the accuracy of our measuring equipment but, more deeply, is about the conceptual nature of the measured quantities—the assumption that the car had simultaneously defined position and speed does not work in quantum mechanics.
A coherent state distributes its quantum-mechanical uncertainty equally between the canonically conjugate coordinates, position and momentum, and the relative uncertainty in phase [defined heuristically] and amplitude are roughly equal—and small at high amplitude.