Search results
Results from the WOW.Com Content Network
Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.
Pascal made contributions to developments in both hydrostatics and hydrodynamics. Pascal's Law is a fundamental principle of fluid mechanics that states that any pressure applied to the surface of a fluid is transmitted uniformly throughout the fluid in all directions, in such a way that initial variations in pressure are not changed.
Following Desargues' thinking, the 16-year-old Pascal produced, as a means of proof, a short treatise on what was called the Mystic Hexagram, Essai pour les coniques (Essay on Conics) and sent it — his first serious work of mathematics — to Père Mersenne in Paris; it is known still today as Pascal's theorem.
A set of communicating vessels Animation showing the filling of communicating vessels. Communicating vessels or communicating vases [1] are a set of containers containing a homogeneous fluid and connected sufficiently far below the top of the liquid: when the liquid settles, it balances out to the same level in all of the containers regardless of the shape and volume of the containers.
David Wetsel notes that Pascal's treatment of the pagan religions is brisk: "As far as Pascal is concerned, the demise of the pagan religions of antiquity speaks for itself. Those pagan religions which still exist in the New World, in India, and in Africa are not even worth a second glance.
The sustained development of probability began in the year 1654 when Blaise Pascal had some correspondence with his father's friend Pierre de Fermat about two problems concerning games of chance he had heard from the Chevalier de Méré earlier the same year, whom Pascal happened to accompany during a trip.
Pascal's law Pascal's theorem: Physics Geometry: Blaise Pascal: Pauli exclusion principle: Quantum mechanics: Wolfgang Pauli: Peano axioms: Foundational mathematics: Giuseppe Peano: Planck's law: Electromagnetism: Max Planck: Poincaré–Bendixson theorem: Mathematics: Henri Poincaré and Ivar Otto Bendixson: Poincaré–Birkhoff–Witt theorem ...
Pascal's theorem is the polar reciprocal and projective dual of Brianchon's theorem. It was formulated by Blaise Pascal in a note written in 1639 when he was 16 years old and published the following year as a broadside titled "Essay pour les coniques. Par B. P." [1] Pascal's theorem is a special case of the Cayley–Bacharach theorem.