Search results
Results from the WOW.Com Content Network
Convergence of Probability Measures is a graduate textbook in the field of mathematical probability theory. It was written by Patrick Billingsley and published by Wiley in 1968. A second edition in 1999 both simplified its treatment of previous topics and updated the book for more recent developments. [1]
In probability theory, there exist several different notions of convergence of sequences of random variables, including convergence in probability, convergence in distribution, and almost sure convergence. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than ...
The weak limit of a sequence of probability measures, provided it exists, is a probability measure. In general, if tightness is not assumed, a sequence of probability (or sub-probability) measures may not necessarily converge vaguely to a true probability measure, but rather to a sub-probability measure (a measure such that μ ( X ) ≤ 1 ...
Probability theory or probability calculus is the branch of mathematics concerned with probability. Although there are several different probability interpretations , probability theory treats the concept in a rigorous mathematical manner by expressing it through a set of axioms .
Patrick Paul Billingsley (May 3, 1925 – April 22, 2011 [1] [2]) was an American mathematician and stage and screen actor, noted for his books in advanced probability theory and statistics. He was born and raised in Sioux Falls, South Dakota , and graduated from the United States Naval Academy in 1946.
The occurrence of the Gaussian probability density 1 = e −x 2 in repeated experiments, in errors of measurements, which result in the combination of very many and very small elementary errors, in diffusion processes etc., can be explained, as is well-known, by the very same limit theorem, which plays a central role in the calculus of probability.
This theorem makes rigorous the intuitive notion of probability as the expected long-run relative frequency of an event's occurrence. It is a special case of any of several more general laws of large numbers in probability theory. Chebyshev's inequality. Let X be a random variable with finite expected value μ and finite non-zero variance σ 2.
The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely: