enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Reaction (physics) - Wikipedia

    en.wikipedia.org/wiki/Reaction_(physics)

    [1] [2] The third law is also more generally stated as: "To every action there is always opposed an equal reaction: or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts." [3] The attribution of which of the two forces is the action and which is the reaction is arbitrary. Either of the two can be ...

  3. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, consider a book at rest on a table. The Earth's gravity pulls down upon the book. The "reaction" to that "action" is not the support force from the table holding up the book, but the gravitational pull of the book acting on the Earth. [note 6] Newton's third law relates to a more fundamental principle, the conservation of momentum.

  4. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    In physics, action is a scalar quantity that describes how the balance of kinetic versus potential energy of a physical system changes with trajectory. Action is significant because it is an input to the principle of stationary action, an approach to classical mechanics that is simpler for multiple objects. [1]

  5. Reactive centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Reactive_centrifugal_force

    In classical mechanics, a reactive centrifugal force forms part of an actionreaction pair with a centripetal force. In accordance with Newton's first law of motion , an object moves in a straight line in the absence of a net force acting on the object.

  6. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    Important forces include the gravitational force and the Lorentz force for electromagnetism. In addition, Newton's third law can sometimes be used to deduce the forces acting on a particle: if it is known that particle A exerts a force F on another particle B, it follows that B must exert an equal and opposite reaction force, −F, on A.

  7. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The normal force, for example, is responsible for the structural integrity of tables and floors as well as being the force that responds whenever an external force pushes on a solid object. An example of the normal force in action is the impact force on an object crashing into an immobile surface. [4]: ch.12 [5]

  8. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    The action depends on the energy function, and the energy function depends on the position, motion, and interactions in the system: variation of the action allows the derivation of the equations of motion without vectors or forces. Several distinct action principles differ in the constraints on their initial and final conditions.

  9. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the applied forces and moments, and reactions, which act on the body(ies).