enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Distribution learning theory - Wikipedia

    en.wikipedia.org/wiki/Distribution_learning_theory

    The distributional learning theory or learning of probability distribution is a framework in computational learning theory. It has been proposed from Michael Kearns , Yishay Mansour , Dana Ron , Ronitt Rubinfeld , Robert Schapire and Linda Sellie in 1994 [ 1 ] and it was inspired from the PAC-framework introduced by Leslie Valiant .

  3. Generative model - Wikipedia

    en.wikipedia.org/wiki/Generative_model

    A generative model is a statistical model of the joint probability distribution (,) on a given observable variable X and target variable Y; [1] A generative model can be used to "generate" random instances of an observation x.

  4. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    When training a machine learning model, machine learning engineers need to target and collect a large and representative sample of data. Data from the training set can be as varied as a corpus of text , a collection of images, sensor data, and data collected from individual users of a service.

  5. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Ewens's sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics. The Balding–Nichols model; The multinomial distribution, a generalization of the binomial distribution. The multivariate normal distribution, a generalization of the normal distribution.

  6. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    In distribution regression, the goal is to regress from probability distributions to reals (or vectors). Many important machine learning and statistical tasks fit into this framework, including multi-instance learning, and point estimation problems without analytical solution (such as hyperparameter or entropy estimation).

  7. Flow-based generative model - Wikipedia

    en.wikipedia.org/wiki/Flow-based_generative_model

    A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.

  8. Diffusion model - Wikipedia

    en.wikipedia.org/wiki/Diffusion_model

    In machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable generative models. A diffusion model consists of three major components: the forward process, the reverse process, and the sampling procedure. [ 1 ]

  9. Data-driven model - Wikipedia

    en.wikipedia.org/wiki/Data-driven_model

    Data-driven models encompass a wide range of techniques and methodologies that aim to intelligently process and analyse large datasets. Examples include fuzzy logic, fuzzy and rough sets for handling uncertainty, [3] neural networks for approximating functions, [4] global optimization and evolutionary computing, [5] statistical learning theory, [6] and Bayesian methods. [7]