Search results
Results from the WOW.Com Content Network
The balance of nature, also known as ecological balance, is a theory that proposes that ecological systems are usually in a stable equilibrium or homeostasis, which is to say that a small change (the size of a particular population, for example) will be corrected by some negative feedback that will bring the parameter back to its original "point of balance" with the rest of the system.
If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to partially reverse the change. For example, adding more S (to the chemical reaction above) from the outside will cause an excess of products, and the system will try to counteract this by increasing the reverse reaction and pushing the ...
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.
The use of sovereign power, codes of conduct, religious and cultural practices and other dynamic processes in a society can be described as a part of an evolved homeostatic system of regularizing life and maintaining an overall equilibrium that protects the security of the whole from internal and external imbalances or dangers.
The equilibrium potential for an ion is the membrane potential at which there is no net movement of the ion. [ 1 ] [ 2 ] [ 3 ] The flow of any inorganic ion, such as Na + or K + , through an ion channel (since membranes are normally impermeable to ions) is driven by the electrochemical gradient for that ion.
An explicit distinction between 'thermal equilibrium' and 'thermodynamic equilibrium' is made by C.J. Adkins. He allows that two systems might be allowed to exchange heat but be constrained from exchanging work; they will naturally exchange heat till they have equal temperatures, and reach thermal equilibrium, but in general, will not be in ...
It is also called hydrostatic pressure, and is defined as the pressure in a fluid measured at a certain point within itself when at equilibrium. [2] Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. [3]
While the binding equilibrium remains unchanged in both direct and reverse titrations, the route to equilibrium and the accessible binding states varies, particularly when one molecule possesses multiple binding sites for the other. [3] Most of the high or low affinity bindings require chelation or competitive titration. [15]