Search results
Results from the WOW.Com Content Network
Linear discriminant analysis (LDA), normal discriminant analysis (NDA), canonical variates analysis (CVA), or discriminant function analysis is a generalization of Fisher's linear discriminant, a method used in statistics and other fields, to find a linear combination of features that characterizes or separates two or more classes of objects or ...
Partial least squares (PLS) regression is a statistical method that bears some relation to principal components regression and is a reduced rank regression; [1] instead of finding hyperplanes of maximum variance between the response and independent variables, it finds a linear regression model by projecting the predicted variables and the observable variables to a new space of maximum ...
The average variance extracted has often been used to assess discriminant validity based on the following "rule of thumb": the positive square root of the AVE for each of the latent variables should be higher than the highest correlation with any other latent variable. If that is the case, discriminant validity is established at the construct ...
Optimal discriminant analysis may be applied to > 0 dimensions, with the one-dimensional case being referred to as UniODA and the multidimensional case being referred to as MultiODA. Optimal discriminant analysis is an alternative to ANOVA (analysis of variance) and regression analysis.
During the process of extracting the discriminative features prior to the clustering, Principal component analysis (PCA), though commonly used, is not a necessarily discriminative approach. In contrast, LDA is a discriminative one. [9] Linear discriminant analysis (LDA), provides an efficient way of eliminating the disadvantage we list above ...
"A Short Preview of Free Statistical Software Packages for Teaching Statistics to Industrial Technology Majors" (PDF). Journal of Industrial Technology. 21 (2). Archived from the original (PDF) on October 25, 2005.
When only one independent variable is present, the results may look like: X < BP ==> Y = A 1.X + B 1 + R Y; X > BP ==> Y = A 2.X + B 2 + R Y; where BP is the breakpoint, Y is the dependent variable, X the independent variable, A the regression coefficient, B the regression constant, and R Y the residual of Y.
The application of Fisher's transformation can be enhanced using a software calculator as shown in the figure. Assuming that the r-squared value found is 0.80, that there are 30 data [clarification needed], and accepting a 90% confidence interval, the r-squared value in another random sample from the same population may range from 0.656 to 0.888.