enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Octahedral number - Wikipedia

    en.wikipedia.org/wiki/Octahedral_number

    146 magnetic balls, packed in the form of an octahedron. In number theory, an octahedral number is a figurate number that represents the number of spheres in an octahedron formed from close-packed spheres. The n th octahedral number can be obtained by the formula: [1] = (+).

  3. Common net - Wikipedia

    en.wikipedia.org/wiki/Common_net

    Common net for both a octahedron and a Tritetrahedron.. In geometry, a common net is a net that can be folded onto several polyhedra.To be a valid common net, there shouldn't exist any non-overlapping sides and the resulting polyhedra must be connected through faces.

  4. Octahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Octahedral_symmetry

    O h, *432, [4,3], or m3m of order 48 – achiral octahedral symmetry or full octahedral symmetry. This group has the same rotation axes as O, but with mirror planes, comprising both the mirror planes of T d and T h. This group is isomorphic to S 4.C 2, and is the full symmetry group of the cube and octahedron. It is the hyperoctahedral group ...

  5. Rectification (geometry) - Wikipedia

    en.wikipedia.org/wiki/Rectification_(geometry)

    The rectification of any regular self-dual polyhedron or tiling will result in another regular polyhedron or tiling with a tiling order of 4, for example the tetrahedron {3,3} becoming an octahedron {3,4}. As a special case, a square tiling {4,4} will turn into another square tiling {4,4} under a rectification operation.

  6. Polyhedral graph - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_graph

    For example, the tetrahedral, cubical, and dodecahedral graphs are simple; the tetrahedral, octahedral, and icosahedral graphs are simplicial. The Halin graphs, graphs formed from a planar embedded tree by adding an outer cycle connecting all of the leaves of the tree, form another important subclass of the polyhedral graphs.

  7. 24-cell - Wikipedia

    en.wikipedia.org/wiki/24-cell

    Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.

  8. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    An octahedron can be any polyhedron with eight faces. In a previous example, the regular octahedron has 6 vertices and 12 edges, the minimum for an octahedron; irregular octahedra may have as many as 12 vertices and 18 edges. [24] There are 257 topologically distinct convex octahedra, excluding mirror images. More specifically there are 2, 11 ...

  9. Goldberg polyhedron - Wikipedia

    en.wikipedia.org/wiki/Goldberg_polyhedron

    Simple examples of Goldberg polyhedra include the dodecahedron and truncated icosahedron. Other forms can be described by taking a chess knight move from one pentagon to the next: first take m steps in one direction, then turn 60° to the left and take n steps. Such a polyhedron is denoted GP(m,n).