enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The formula follows from considering the set {1, 2, 3, ..., n} and counting separately (a) the k-element groupings that include a particular set element, say "i", in every group (since "i" is already chosen to fill one spot in every group, we need only choose k − 1 from the remaining n − 1) and (b) all the k-groupings that don't include "i ...

  4. Binomial (polynomial) - Wikipedia

    en.wikipedia.org/wiki/Binomial_(polynomial)

    A binomial is a polynomial which is the sum of two monomials. A binomial in a single indeterminate (also known as a univariate binomial) can be written in the form , where a and b are numbers, and m and n are distinct non-negative integers and x is a symbol which is called an indeterminate or, for historical reasons, a variable.

  5. Binomial series - Wikipedia

    en.wikipedia.org/wiki/Binomial_series

    where the power series on the right-hand side of is expressed in terms of the (generalized) binomial coefficients ():= () (+)!.Note that if α is a nonnegative integer n then the x n + 1 term and all later terms in the series are 0, since each contains a factor of (n − n).

  6. Faulhaber's formula - Wikipedia

    en.wikipedia.org/wiki/Faulhaber's_formula

    Faulhaber's formula is also called Bernoulli's formula. Faulhaber did not know the properties of the coefficients later discovered by Bernoulli. Rather, he knew at least the first 17 cases, as well as the existence of the Faulhaber polynomials for odd powers described below. [2] Jakob Bernoulli's Summae Potestatum, Ars Conjectandi, 1713

  7. Pascal's rule - Wikipedia

    en.wikipedia.org/wiki/Pascal's_rule

    In mathematics, Pascal's rule (or Pascal's formula) is a combinatorial identity about binomial coefficients. It states that for positive natural numbers n and k , ( n − 1 k ) + ( n − 1 k − 1 ) = ( n k ) , {\displaystyle {n-1 \choose k}+{n-1 \choose k-1}={n \choose k},} where ( n k ) {\displaystyle {\tbinom {n}{k}}} is a binomial ...

  8. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    The notation in the formula below differs from the previous formulas in two respects: [26] Firstly, z x has a slightly different interpretation in the formula below: it has its ordinary meaning of 'the x th quantile of the standard normal distribution', rather than being a shorthand for 'the (1 − x ) th quantile'.

  9. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Vieta's formulas can equivalently be written as < < < (=) = for k = 1, 2, ..., n (the indices i k are sorted in increasing order to ensure each product of k roots is used exactly once). The left-hand sides of Vieta's formulas are the elementary symmetric polynomials of the roots.