enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Immersed boundary method - Wikipedia

    en.wikipedia.org/wiki/Immersed_Boundary_Method

    Any existing fluid solver can be coupled to a solver for the fiber equations to solve the Immersed Boundary equations. Variants of this basic approach have been applied to simulate a wide variety of mechanical systems involving elastic structures which interact with fluid flows.

  3. Kelvin's circulation theorem - Wikipedia

    en.wikipedia.org/wiki/Kelvin's_circulation_theorem

    In fluid mechanics, Kelvin's circulation theorem states: [1] [2] In a barotropic, ideal fluid with conservative body forces, the circulation around a closed curve (which encloses the same fluid elements) moving with the fluid remains constant with time. The theorem is named after William Thomson, 1st Baron Kelvin who published it in 1869.

  4. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  5. Projection method (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Projection_method_(fluid...

    In computational fluid dynamics, the projection method, also called Chorin's projection method, is an effective means of numerically solving time-dependent incompressible fluid-flow problems. It was originally introduced by Alexandre Chorin in 1967 [1] [2] as an efficient means of solving the incompressible Navier-Stokes equations.

  6. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  7. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  8. Topological fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Topological_fluid_dynamics

    Many problems of fluid dynamics and magnetohydrodynamics fall within this category. Recent developments in topological fluid dynamics include also applications to magnetic braids in the solar corona, DNA knotting by topoisomerases, polymer entanglement in chemical physics and chaotic behavior in dynamical systems. A mathematical introduction to ...

  9. Rayleigh's equation (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Rayleigh's_equation_(fluid...

    The equation is named after Lord Rayleigh, who introduced it in 1880. [2] The Orr–Sommerfeld equation – introduced later, for the study of stability of parallel viscous flow – reduces to Rayleigh's equation when the viscosity is zero. [3] Rayleigh's equation, together with appropriate boundary conditions, most often poses an eigenvalue ...