Search results
Results from the WOW.Com Content Network
Ackermann's formula provides a direct way to calculate the necessary adjustments—specifically, the feedback gains—needed to move the system's poles to the target locations. This method, developed by Jürgen Ackermann , [ 2 ] is particularly useful for systems that don't change over time ( time-invariant systems ), allowing engineers to ...
The Ackermann function, due to its definition in terms of extremely deep recursion, can be used as a benchmark of a compiler's ability to optimize recursion. The first published use of Ackermann's function in this way was in 1970 by Dragoș Vaida [27] and, almost simultaneously, in 1971, by Yngve Sundblad. [14]
A specific application of the matched Z-transform method in the digital control field is with the Ackermann's formula, which changes the poles of the controllable system; in general from an unstable (or nearby) location to a stable location.
In mathematics and logic, Ackermann set theory (AST, also known as / [1]) is an axiomatic set theory proposed by Wilhelm Ackermann in 1956. [2] AST differs from Zermelo–Fraenkel set theory (ZF) in that it allows proper classes, that is, objects that are not sets, including a class of all sets. It replaces several of the standard ZF axioms for ...
Ackermann was born in Herscheid, Germany, and was awarded a Ph.D. by the University of Göttingen in 1925 for his thesis Begründung des "tertium non datur" mittels der Hilbertschen Theorie der Widerspruchsfreiheit, which was a consistency proof of arithmetic apparently without Peano induction (although it did use e.g. induction over the length of proofs).
The variation formula computations above define the principal symbol of the mapping which sends a pseudo-Riemannian metric to its Riemann tensor, Ricci tensor, or ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Ackermann geometry. The Ackermann steering geometry (also called Ackermann's steering trapezium) [1] is a geometric arrangement of linkages in the steering of a car or other vehicle designed to solve the problem of wheels on the inside and outside of a turn needing to trace out circles of different radii.