Search results
Results from the WOW.Com Content Network
Mechanics, in the most general sense, is the study of forces and their effects on matter. Typically, engineering mechanics is used to analyze and predict the acceleration and deformation (both elastic and plastic) of objects under known forces (also called loads) or stresses. Subdisciplines of mechanics include:
A diamond cuboctahedron showing seven crystallographic planes, imaged with scanning electron microscopy Six classes of conventional engineering materials. Materials science is an interdisciplinary field of researching and discovering materials. Materials engineering is an engineering field of finding uses for materials in other fields and ...
Various machine components used in mechanical engineering. Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. [1]
A solid is a material that can support a substantial amount of shearing force over a given time scale during a natural or industrial process or action. This is what distinguishes solids from fluids, because fluids also support normal forces which are those forces that are directed perpendicular to the material plane across from which they act and normal stress is the normal force per unit area ...
Typically, auxetic materials have low density, which is what allows the hinge-like areas of the auxetic microstructures to flex. [12]At the macroscale, auxetic behaviour can be illustrated with an inelastic string wound around an elastic cord.
Solid-state physics is the study of rigid matter, or solids, through methods such as solid-state chemistry, quantum mechanics, crystallography, electromagnetism, and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic-scale ...
Anisotropic material models are available for linear elasticity. In the nonlinear regime, the modeling is often restricted to orthotropic material models which do not capture the physics for all heterogeneous materials. An important goal of micromechanics is predicting the anisotropic response of the heterogeneous material on the basis of the ...
The history of materials science is the study of how different materials were used and developed through the history of Earth and how those materials affected the culture of the peoples of the Earth. The term " Silicon Age " is sometimes used to refer to the modern period of history during the late 20th to early 21st centuries.