Search results
Results from the WOW.Com Content Network
, second moment of area of the cross section of the column (area moment of inertia),, unsupported length of column,, column effective length factor; This formula was derived in 1744 by the Swiss mathematician Leonhard Euler. [2] The column will remain straight for loads less than the critical load.
Excel's storage of numbers in binary format also affects its accuracy. [3] To illustrate, the lower figure tabulates the simple addition 1 + x − 1 for several values of x. All the values of x begin at the 15 th decimal, so Excel must take them into account. Before calculating the sum 1 + x, Excel first approximates x as a binary number
Use of a user-defined function sq(x) in Microsoft Excel. The named variables x & y are identified in the Name Manager. The function sq is introduced using the Visual Basic editor supplied with Excel. Subroutine in Excel calculates the square of named column variable x read from the spreadsheet, and writes it into the named column variable y.
The slenderness ratio is an indicator of the specimen's resistance to bending and buckling, due to its length and cross section. If the slenderness ratio is less than the critical slenderness ratio, the column is considered to be a short column. In these cases, the Johnson parabola is more applicable than the Euler formula. [5]
Since structural columns are commonly of intermediate length, the Euler formula has little practical application for ordinary design. Issues that cause deviation from the pure Euler column behaviour include imperfections in geometry of the column in combination with plasticity/non-linear stress strain behaviour of the column's material.
The effective length is calculated from the actual length of the member considering the rotational and relative translational boundary conditions at the ends. Slenderness captures the influence on buckling of all the geometric aspects of the column, namely its length, area, and second moment of area .
Example chromatogram showing signal as a function of retention time. In chromatography, resolution is a measure of the separation of two peaks of different retention time t in a chromatogram. [1] [2] [3] [4]
It is the distance between the centre (the heart) of a column and the centre (the heart) of another column. By expressing a distance in c.t.c., one can measure distances between columns with different diameters without confusion.