Search results
Results from the WOW.Com Content Network
For example, for bonds, and bond options, [13] under each possible evolution of interest rates we observe a different yield curve and a different resultant bond price. To determine the bond value, these bond prices are then averaged; to value the bond option, as for equity options, the corresponding exercise values are averaged and present valued.
The binomial correlation approach of equation (5) is a limiting case of the Pearson correlation approach discussed in section 1. As a consequence, the significant shortcomings of the Pearson correlation approach for financial modeling apply also to the binomial correlation model. [citation needed]
The model was introduced by Fischer Black, Emanuel Derman, and Bill Toy. It was first developed for in-house use by Goldman Sachs in the 1980s and was published in the Financial Analysts Journal in 1990. A personal account of the development of the model is provided in Emanuel Derman's memoir My Life as a Quant. [4]
Binomial Lattice for equity, with CRR formulae Tree for an bond option returning the OAS (black vs red): the short rate is the top value; the development of the bond value shows pull-to-par clearly . In quantitative finance, a lattice model [1] is a numerical approach to the valuation of derivatives in situations requiring a discrete time model.
The "Fed model", or "Fed Stock Valuation Model" (FSVM), is a disputed theory of equity valuation that compares the stock market's forward earnings yield to the nominal yield on long-term government bonds, and that the stock market – as a whole – is fairly valued, when the one-year forward-looking I/B/E/S earnings yield equals the 10-year ...
Because interest rate caps/floors are equivalent to bond puts and calls respectively, the above analysis shows that caps and floors can be priced analytically in the Hull–White model. Jamshidian's trick applies to Hull–White (as today's value of a swaption in the Hull–White model is a monotonic function of today's short rate).
The CIR model uses a special case of a basic affine jump diffusion, which still permits a closed-form expression for bond prices. Time varying functions replacing coefficients can be introduced in the model in order to make it consistent with a pre-assigned term structure of interest rates and possibly volatilities.
Tree returning the OAS (black vs red): the short rate is the top value; the development of the bond value shows pull to par clearly.. A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written .