Search results
Results from the WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
[1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions. Most of these functions are also available in the C++ standard library, though in different headers (the C headers are included as well, but only as a deprecated compatibility feature).
The same syntactic expression 1 + 2 × 3 can have different values (mathematically 7, but also 9), depending on the order of operations implied by the context (See also Operations § Calculators). For real numbers , the product a × b × c {\displaystyle a\times b\times c} is unambiguous because ( a × b ) × c = a × ( b × c ) {\displaystyle ...
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
Hom(A, –) : C → Set Hom(–, B) : C → Set [1] This is a covariant functor given by: Hom(A, –) maps each object X in C to the set of morphisms, Hom(A, X) Hom(A, –) maps each morphism f : X → Y to the function Hom(A, f) : Hom(A, X) → Hom(A, Y) given by for each g in Hom(A, X).
A product of monic polynomials is monic. A product of polynomials is monic if and only if the product of the leading coefficients of the factors equals 1. This implies that, the monic polynomials in a univariate polynomial ring over a commutative ring form a monoid under polynomial multiplication.
where f (2k−1) is the (2k − 1)th derivative of f and B 2k is the (2k)th Bernoulli number: B 2 = 1 / 6 , B 4 = − + 1 / 30 , and so on. Setting f ( x ) = x , the first derivative of f is 1, and every other term vanishes, so [ 15 ]
Let x be the number of cocks, y be the number of hens, and z be the number of chicks, then the problem is to find x, y and z satisfying the following equations: x + y +z = 100 5x + 3y + z/3 = 100. Obviously, only non-negative integer values are acceptable. Expressing y and z in terms of x we get y = 25 − (7/4)x z = 75 + (3/4)x