enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    A low code-rate close to zero implies a strong code that uses many redundant bits to achieve a good performance, while a large code-rate close to 1 implies a weak code. The redundant bits that protect the information have to be transferred using the same communication resources that they are trying to protect.

  3. BCJR algorithm - Wikipedia

    en.wikipedia.org/wiki/BCJR_algorithm

    The algorithm is named after its inventors: Bahl, Cocke, Jelinek and Raviv. [1] This algorithm is critical to modern iteratively-decoded error-correcting codes, including turbo codes and low-density parity-check codes.

  4. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.

  5. Error analysis (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Error_analysis_(mathematics)

    The analysis of errors computed using the global positioning system is important for understanding how GPS works, and for knowing what magnitude errors should be expected.

  6. Turbo code - Wikipedia

    en.wikipedia.org/wiki/Turbo_code

    Hardware-wise, this turbo code encoder consists of two identical RSC coders, C 1 and C 2, as depicted in the figure, which are connected to each other using a concatenation scheme, called parallel concatenation: In the figure, M is a memory register. The delay line and interleaver force input bits d k to appear in different sequences.

  7. Look-ahead (backtracking) - Wikipedia

    en.wikipedia.org/wiki/Look-ahead_(backtracking)

    In this example, x 1 =2 and the tentative assignment x 2 =1 is considered. Forward checking only checks whether each of the unassigned variables x 3 and x 4 is consistent with the partial assignment, removing the value 2 from their domains. The simpler technique for evaluating the effect of a specific assignment to a variable is called forward ...

  8. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    LDPC codes have no limitations of minimum distance, [34] that indirectly means that LDPC codes may be more efficient on relatively large code rates (e.g. 3/4, 5/6, 7/8) than turbo codes. However, LDPC codes are not the complete replacement: turbo codes are the best solution at the lower code rates (e.g. 1/6, 1/3, 1/2). [35] [36]

  9. Erasure code - Wikipedia

    en.wikipedia.org/wiki/Erasure_code

    [1] There are many different erasure coding schemes. The most popular erasure codes are Reed-Solomon coding, Low-density parity-check code (LDPC codes), and Turbo codes. [1] As of 2023, modern data storage systems can be designed to tolerate the complete failure of a few disks without data loss, using one of 3 approaches: [2] [3] [4 ...