enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...

  3. Atmospheric escape - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_escape

    One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.

  4. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    But the maximal velocity on the new orbit could be approximated to 33.5 km/s by assuming that it reached practical "infinity" at 3.5 km/s and that such Earth-bound "infinity" also moves with Earth's orbital velocity of about 30 km/s. The InSight mission to Mars launched with a C 3 of 8.19 km 2 /s 2. [5]

  5. Parabolic trajectory - Wikipedia

    en.wikipedia.org/wiki/Parabolic_trajectory

    At any time the average speed from = is 1.5 times the current speed, i.e. 1.5 times the local escape velocity. To have t = 0 {\displaystyle t=0\!\,} at the surface, apply a time shift; for the Earth (and any other spherically symmetric body with the same average density) as central body this time shift is 6 minutes and 20 seconds; seven of ...

  6. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    The average speed is 7.7 km/s, the net delta-v to reach this orbit is 8.1 km/s (the actual delta-v is typically 1.5–2.0 km/s more for atmospheric drag and gravity drag). The increase per meter would be 4.4 J/kg; this rate corresponds to one half of the local gravity of 8.8 m/s 2. For an altitude of 100 km (radius is 6471 km):

  7. Diffusion-limited escape - Wikipedia

    en.wikipedia.org/wiki/Diffusion-limited_escape

    A diagram showing that hydrogen diffusion in the upper atmosphere is the bottleneck for hydrogen escape on Earth, following from that given in Catling and Kasting (2017), p. 147. [1] Hydrogen escape on Earth occurs at ~500 km altitude at the exobase (the lower border of the exosphere) where gases are collisionless.

  8. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  9. Atmospheric entry - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_entry

    The five species model is only usable for entry from low Earth orbit where entry velocity is approximately 7.8 km/s (28,000 km/h; 17,000 mph). For lunar return entry of 11 km/s, [23] the shock layer contains a significant amount of ionized nitrogen and oxygen. The five-species model is no longer accurate and a twelve-species model must be used ...