enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  3. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    A series or, redundantly, an infinite series, is an infinite sum. It is often represented as [ 8 ] [ 15 ] [ 16 ] a 0 + a 1 + a 2 + ⋯ or a 1 + a 2 + a 3 + ⋯ , {\displaystyle a_{0}+a_{1}+a_{2}+\cdots \quad {\text{or}}\quad a_{1}+a_{2}+a_{3}+\cdots ,} where the terms a k {\displaystyle a_{k}} are the members of a sequence of numbers ...

  4. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Special pages; Help; Learn to edit; Community portal; Recent changes; Upload file

  5. Cauchy condensation test - Wikipedia

    en.wikipedia.org/wiki/Cauchy_condensation_test

    Here the series definitely converges for a > 1, and diverges for a < 1. When a = 1, the condensation transformation gives the series (⁡). The logarithms "shift to the left". So when a = 1, we have convergence for b > 1, divergence for b < 1. When b = 1 the value of c enters.

  6. Integral test for convergence - Wikipedia

    en.wikipedia.org/wiki/Integral_test_for_convergence

    for the infinite series. Note that if the function () is increasing, then the function () is decreasing and the above theorem applies.. Many textbooks require the function to be positive, [1] [2] [3] but this condition is not really necessary, since when is negative and decreasing both = and () diverge.

  7. Residue theorem - Wikipedia

    en.wikipedia.org/wiki/Residue_theorem

    Since e itz is an entire function (having no singularities at any point in the complex plane), this function has singularities only where the denominator z 2 + 1 is zero. Since z 2 + 1 = (z + i)(z − i), that happens only where z = i or z = −i. Only one of those points is in the region bounded by this contour.

  8. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  9. Euler–Maclaurin formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Maclaurin_formula

    In mathematics, the Euler–Maclaurin formula is a formula for the difference between an integral and a closely related sum. It can be used to approximate integrals by finite sums, or conversely to evaluate finite sums and infinite series using integrals and the machinery of calculus .