Search results
Results from the WOW.Com Content Network
henry per metre: H/m kg⋅m ⋅s −2 ⋅A −2: χ magnetic susceptibility (dimensionless) 1 1 m magnetic dipole moment: ampere square meter: A⋅m 2 = J⋅T −1: A⋅m 2: σ mass magnetization: ampere square meter per kilogram: A⋅m 2 /kg A⋅m 2 ⋅kg −1
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
Force between two 1 meter long conductors, 1 meter apart by an outdated definition of one ampere: 10 −6 micronewton (μN) 1–150 μN Output of FEEP ion thrusters used in NASA's Laser Interferometer Space Antenna [11] 10 −4 10 −3 millinewton (mN) 2-4 mN EQUULEUS § Propulsion: 10 −2: 19-92 mN
F is force (SI unit: newton) q m1 and q m2 are the magnitudes of magnetic charge on magnetic poles (SI unit: ampere-meter) μ is the permeability of the intervening medium (SI unit: tesla meter per ampere, henry per meter or newton per ampere squared) r is the separation (SI unit: meter).
The SI units for the torque constant are newton meters per ampere (N·m/A). Since 1 N·m = 1 J, and 1 A = 1 C/s, then 1 N·m/A = 1 J·s/C = 1 V·s (same units as back EMF constant). The relationship between K T {\displaystyle K_{\text{T}}} and K v {\displaystyle K_{\text{v}}} is not intuitive, to the point that many people simply assert that ...
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). [1] If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self-inductance of 1 henry. The unit is named after Joseph Henry (1797–1878), the American scientist who discovered electromagnetic induction independently of and at about the same ...
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.
This may be appreciated by looking at the units for each. The unit of electric field in the MKS system of units is newtons per coulomb, N/C, while the magnetic field (in teslas) can be written as N/(C⋅m/s). The dividing factor between the two types of field is metres per second (m/s), which is velocity.