enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation d d x e x = e x {\displaystyle {\tfrac {d}{dx}}e^{x}=e^{x}} means that the slope of the tangent to the graph at each point is equal to its height (its y -coordinate) at that point.

  4. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction

  5. Tetration - Wikipedia

    en.wikipedia.org/wiki/Tetration

    The limit, should it exist, is a positive real solution of the equation y = x y. Thus, x = y 1/y. The limit defining the infinite exponential of x does not exist when x > e 1/e because the maximum of y 1/y is e 1/e. The limit also fails to exist when 0 < x < e −e. This may be extended to complex numbers z with the definition:

  6. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    One way of defining the exponential function over the complex numbers is to first define it for the domain of real numbers using one of the above characterizations, and then extend it as an analytic function, which is characterized by its values on any infinite domain set.

  7. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm function log b (x) (blue) is obtained by reflecting the graph of the function b x (red) at the diagonal line (x = y). As discussed above, the function log b is the inverse to the exponential function .

  8. Elementary function arithmetic - Wikipedia

    en.wikipedia.org/wiki/Elementary_function_arithmetic

    One can omit the binary function symbol exp from the language, by taking Robinson arithmetic together with induction for all formulas with bounded quantifiers and an axiom stating roughly that exponentiation is a function defined everywhere. This is similar to EFA and has the same proof theoretic strength, but is more cumbersome to work with.

  9. Matrix exponential - Wikipedia

    en.wikipedia.org/wiki/Matrix_exponential

    To justify this claim, we transform our order n scalar equation into an order one vector equation by the usual reduction to a first order system. Our vector equation takes the form d Y d t − A Y = F ( t ) , Y ( t 0 ) = Y 0 , {\displaystyle {\frac {dY}{dt}}-A\ Y=F(t),\quad Y(t_{0})=Y_{0},} where A is the transpose companion matrix of P .