Search results
Results from the WOW.Com Content Network
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the outward flux of a vector field from an infinitesimal volume around a given point.
Bottom: Field line through a curved surface, showing the setup of the unit normal and surface element to calculate flux. To calculate the flux of a vector field F (red arrows) through a surface S the surface is divided into small patches dS. The flux through each patch is equal to the normal (perpendicular) component of the field, the dot ...
The divergence theorem can be used to calculate a flux through a closed surface that fully encloses a volume, like any of the surfaces on the left. It can not directly be used to calculate the flux through surfaces with boundaries, like those on the right. (Surfaces are blue, boundaries are red.)
The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium). The lower graph shows the logarithmic plot for different values of α (Tafel plot).
To be able to calculate this time evolution, one needs to know how to calculate the flux. This section explores the simplest hypothesis: flux is linearly related to the concentration difference (just as for molecular diffusion). This also comes as the most intuitive guess from the analysis just made. Flux is in principle a vector.
Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...
In words, the stream function is the volumetric flux through the test surface per unit thickness, where thickness is measured perpendicular to the plane of flow. The point A {\displaystyle A} is a reference point that defines where the stream function is identically zero.
The convection–diffusion equation can be derived in a straightforward way [4] from the continuity equation, which states that the rate of change for a scalar quantity in a differential control volume is given by flow and diffusion into and out of that part of the system along with any generation or consumption inside the control volume: + =, where j is the total flux and R is a net ...