enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. L'Hôpital's rule - Wikipedia

    en.wikipedia.org/wiki/L'Hôpital's_rule

    L'Hôpital's rule (/ ˌ l oʊ p iː ˈ t ɑː l /, loh-pee-TAHL) or L'Hospital's rule, also known as Bernoulli's rule, is a mathematical theorem that allows evaluating limits of indeterminate forms using derivatives. Application (or repeated application) of the rule often converts an indeterminate form to an expression that can be easily ...

  3. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  4. Guillaume de l'Hôpital - Wikipedia

    en.wikipedia.org/wiki/Guillaume_de_l'Hôpital

    Guillaume François Antoine, Marquis de l'Hôpital [1] (French: [ɡijom fʁɑ̃swa ɑ̃twan maʁki də lopital]; sometimes spelled L'Hospital; 7 June 1661 – 2 February 1704) [a] was a French mathematician. His name is firmly associated with l'Hôpital's rule for calculating limits involving indeterminate forms 0/0 and ∞/∞.

  5. Analyse des Infiniment Petits pour l'Intelligence des Lignes ...

    en.wikipedia.org/wiki/Analyse_des_Infiniment...

    The book includes the first appearance of L'Hôpital's rule. The rule is believed to be the work of Johann Bernoulli, since l'Hôpital, a nobleman, paid Bernoulli a retainer of 300₣ per year to keep him updated on developments in calculus and to solve problems he had. Moreover, the two signed a contract allowing l'Hôpital to use Bernoulli's ...

  6. Wikipedia:Reference desk/Archives/Mathematics/2012 September ...

    en.wikipedia.org/wiki/Wikipedia:Reference_desk/...

    1.1 L'Hopital's rule. 7 comments. 1.2 Definite integral from -1 to 1 of 1/x. 3 comments. 1.3 simple Differential equation. 6 comments. 1.4 Skewed distribution with ...

  7. Limit (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Limit_(mathematics)

    [2] [3] Grégoire de Saint-Vincent gave the first definition of limit (terminus) of a geometric series in his work Opus Geometricum (1647): "The terminus of a progression is the end of the series, which none progression can reach, even not if she is continued in infinity, but which she can approach nearer than a given segment." [4]

  8. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Its first appearance is in a letter written to Guillaume de l'Hôpital by Gottfried Wilhelm Leibniz in 1695. [2] Around the same time, Leibniz wrote to one of the Bernoulli brothers describing the similarity between the binomial theorem and the Leibniz rule for the fractional derivative of a product of two functions. [citation needed]

  9. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    The rule is sometimes written as "DETAIL", where D stands for dv and the top of the list is the function chosen to be dv. An alternative to this rule is the ILATE rule, where inverse trigonometric functions come before logarithmic functions. To demonstrate the LIATE rule, consider the integral ⁡ ().