enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of planar symmetry groups - Wikipedia

    en.wikipedia.org/wiki/List_of_planar_symmetry_groups

    This article summarizes the classes of discrete symmetry groups of the Euclidean plane. The symmetry groups are named here by three naming schemes: International notation, orbifold notation, and Coxeter notation. There are three kinds of symmetry groups of the plane: 2 families of rosette groups – 2D point groups; 7 frieze groups – 2D line ...

  3. Lists of uniform tilings on the sphere, plane, and hyperbolic ...

    en.wikipedia.org/wiki/Lists_of_uniform_tilings...

    There are 4 symmetry classes of reflection on the sphere, and three in the Euclidean plane. A few of the infinitely many such patterns in the hyperbolic plane are also listed. (Increasing any of the numbers defining a hyperbolic or Euclidean tiling makes another hyperbolic tiling.)

  4. Euclidean plane - Wikipedia

    en.wikipedia.org/wiki/Euclidean_plane

    In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted or . It is a geometric space in which two real numbers are required to determine the position of each point . It is an affine space , which includes in particular the concept of parallel lines .

  5. Uniform tiling - Wikipedia

    en.wikipedia.org/wiki/Uniform_tiling

    There are symmetry groups on the Euclidean plane constructed from fundamental triangles: (4 4 2), (6 3 2), and (3 3 3). Each is represented by a set of lines of reflection that divide the plane into fundamental triangles. These symmetry groups create 3 regular tilings, and 7 semiregular ones. A number of the semiregular tilings are repeated ...

  6. Euclidean group - Wikipedia

    en.wikipedia.org/wiki/Euclidean_group

    The Euclidean group can be seen as the symmetry group of the space itself, and contains the group of symmetries of any figure (subset) of that space. A Euclidean isometry can be direct or indirect , depending on whether it preserves the handedness of figures.

  7. Orbifold notation - Wikipedia

    en.wikipedia.org/wiki/Orbifold_notation

    the symbol indicates infinite rotational symmetry around a line; it can only occur for bold face groups. By abuse of language, we might say that such a group is a subgroup of symmetries of the Euclidean plane with only one independent translation. The frieze groups occur in this way.

  8. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]

  9. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    In geometry, straightedge-and-compass construction – also known as ruler-and-compass construction, Euclidean construction, or classical construction – is the construction of lengths, angles, and other geometric figures using only an idealized ruler and a compass.