Search results
Results from the WOW.Com Content Network
The cardinality or "size" of a multiset is the sum of the multiplicities of all its elements. For example, in the multiset {a, a, b, b, b, c} the multiplicities of the members a, b, and c are respectively 2, 3, and 1, and therefore the cardinality of this multiset is 6.
Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.
Max-sum MSSP: for each subset j in 1,...,m, there is a capacity C j. The goal is to make the sum of all subsets as large as possible, such that the sum in each subset j is at most C j. [1] Max-min MSSP (also called bottleneck MSSP or BMSSP): again each subset has a capacity, but now the goal is to make the smallest subset sum as large as ...
Let C i (for i between 1 and k) be the sum of subset i in a given partition. Instead of minimizing the objective function max(C i), one can minimize the objective function max(f(C i)), where f is any fixed function. Similarly, one can minimize the objective function sum(f(C i)), or maximize min(f(C i)), or maximize sum(f(C i)).
HyperLogLog is an algorithm for the count-distinct problem, approximating the number of distinct elements in a multiset. [1] Calculating the exact cardinality of the distinct elements of a multiset requires an amount of memory proportional to the cardinality, which is impractical for very large data sets. Probabilistic cardinality estimators ...
Conversely, in every solution of S u, since the target sum is 7 T and each element is in ( T /4, 7 T /2), there must be exactly 3 elements per set, so it corresponds to a solution of S r. The ABC-partition problem (also called numerical 3-d matching ) is a variant in which, instead of a set S with 3 m integers, there are three sets A , B , C ...
Equal-cardinality partition is a variant in which both parts should have an equal number of items, in addition to having an equal sum. This variant is NP-hard too. [5]: SP12 Proof. Given a standard Partition instance with some n numbers, construct an Equal-Cardinality-Partition instance by adding n zeros. Clearly, the new instance has an equal ...
Venn diagram showing the union of sets A and B as everything not in white. In combinatorics, the inclusion–exclusion principle is a counting technique which generalizes the familiar method of obtaining the number of elements in the union of two finite sets; symbolically expressed as