Search results
Results from the WOW.Com Content Network
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
The regular algorithm requires an n-entry array initialized with the input values, but then requires only k iterations to choose a random sample of k elements. Thus, it takes O(k) time and n space. The inside-out algorithm can be implemented using only a k-element array a. Elements a[i] for i ≥ k are simply not stored.
The reversal algorithm is the simplest to explain, using rotations. A rotation is an in-place reversal of array elements. This method swaps two elements of an array from outside in within a range. The rotation works for an even or odd number of array elements. The reversal algorithm uses three in-place rotations to accomplish an in-place block ...
The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.
Position, the position that has been swapped is marked as true in the corresponding position of the tag array, and is incremented until the end of the array is sorted. Algorithm process: Set an equal number of tag arrays to initialize to false values. Visit the array when tag[i] is false, calculate the position corresponding to the interpolation=p.
This algorithm is a randomized version of Kruskal's algorithm. Create a list of all walls, and create a set for each cell, each containing just that one cell. For each wall, in some random order: If the cells divided by this wall belong to distinct sets: Remove the current wall. Join the sets of the formerly divided cells.
Basis: Heap's Algorithm trivially permutes an array A of size 1 as outputting A is the one and only permutation of A. Induction: Assume Heap's Algorithm permutes an array of size i. Using the results from the previous proof, every element of A will be in the "buffer" once when the first i elements are permuted.
Let k be defined as an element in F, the array of Fibonacci numbers. n = F m is the array size. If n is not a Fibonacci number, let F m be the smallest number in F that is greater than n. The array of Fibonacci numbers is defined where F k+2 = F k+1 + F k, when k ≥ 0, F 1 = 1, and F 0 = 1. To test whether an item is in the list of ordered ...