Search results
Results from the WOW.Com Content Network
Diagram of IMAGE spacecraft Launch of IMAGE spacecraft aboard of Delta 277.. IMAGE was the first spacecraft dedicated to imaging the Earth's magnetosphere. [10] IMAGE was a spacecraft developed by the Medium-class Explorer (MIDEX) program, and it was the first spacecraft dedicated to observing the magnetosphere of the Earth, producing comprehensive global images of plasma in the inner ...
The Solar-Terrestrial Observer for the Response of the Magnetosphere (STORM) was one of five mission proposals selected to proceed to Phase A concept studies as part of the 2019 NASA Heliophysics Medium Class Explorer Announcement of Opportunity. [1] [2] [3] STORM will provide the first-ever global view of the Sun-Earth system. STORM takes ...
The magnetosphere of Jupiter is the largest planetary magnetosphere in the Solar System, extending up to 7,000,000 kilometers (4,300,000 mi) on the dayside and almost to the orbit of Saturn on the nightside. [17] Jupiter's magnetosphere is stronger than Earth's by an order of magnitude, and its magnetic moment is approximately 18,000 times ...
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
The mission was selected for support by NASA in 2005. System engineering, spacecraft bus design, integration and testing has been performed by Goddard Space Flight Center in Maryland. Instrumentation is being improved, with extensive experience brought in from other projects, such as the IMAGE, Cluster and Cassini missions.
Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a planned joint venture mission between the European Space Agency and the Chinese Academy of Sciences.SMILE will image for the first time the magnetosphere of the Sun in soft X-rays and UV during up to 40 hours per orbit, improving the understanding of the dynamic interaction between the solar wind and Earth's magnetosphere.
The magnetosphere contains charged particles that are trapped from the stellar wind, which then move along these field lines. As the star rotates, the magnetosphere rotates with it, dragging along the charged particles. [13] As stars emit matter with a stellar wind from the photosphere, the magnetosphere creates a torque on the ejected matter.
[17] [18] As the mantle and core cooled over time, inner-core crystallization (which would provide latent heat) and chemical convection may have played a major role in driving the dynamo. Following inner-core formation, light elements migrated from the inner-core boundary into the liquid outer core and drove convection by buoyancy. [ 18 ]