enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The axioms of modules imply that (−1)x = −x, where the first minus denotes the additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.

  4. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Here units refers to elements with a multiplicative inverse ... p is cyclic and hence isomorphic to the additive group ... residues coprime to 9: 1, 2, 4, 5, 7, 8.

  5. Field (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Field_(mathematics)

    In particular, one may deduce the additive inverse of every element as soon as one knows −1. [9] If ab = 0 then a or b must be 0, since, if a ≠ 0, then b = (a −1 a)b = a −1 (ab) = a −1 ⋅ 0 = 0. This means that every field is an integral domain. In addition, the following properties are true for any elements a and b: −0 = 0 1 −1 ...

  6. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  7. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    The inverse element is the element that results in the identity element when combined with another element. For instance, the additive inverse of the number 6 is -6 since their sum is 0. [41] There are not only inverse elements but also inverse operations. In an informal sense, one operation is the inverse of another operation if it undoes the ...

  8. Group (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Group_(mathematics)

    The manipulations of the Rubik's Cube form the Rubik's Cube group.. In mathematics, a group is a set with an operation that satisfies the following constraints: the operation is associative, it has an identity element, and every element of the set has an inverse element.

  9. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    t 3 = 6 is the modular multiplicative inverse of 5 × 7 (mod 11). Thus, X = 3 × (7 × 11) × 4 + 6 × (5 × 11) × 4 + 6 × (5 × 7) × 6 = 3504. and in its unique reduced form X ≡ 3504 ≡ 39 (mod 385) since 385 is the LCM of 5,7 and 11. Also, the modular multiplicative inverse figures prominently in the definition of the Kloosterman sum.