enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. No free lunch in search and optimization - Wikipedia

    en.wikipedia.org/wiki/No_free_lunch_in_search...

    A colourful way of describing such a circumstance, introduced by David Wolpert and William G. Macready in connection with the problems of search [1] and optimization, [2] is to say that there is no free lunch. Wolpert had previously derived no free lunch theorems for machine learning (statistical inference). [3]

  3. LogitBoost - Wikipedia

    en.wikipedia.org/wiki/LogitBoost

    In machine learning and computational learning theory, LogitBoost is a boosting algorithm formulated by Jerome Friedman, Trevor Hastie, and Robert Tibshirani.. The original paper casts the AdaBoost algorithm into a statistical framework. [1]

  4. Mamba (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Mamba_(deep_learning...

    Mamba [a] is a deep learning architecture focused on sequence modeling. It was developed by researchers from Carnegie Mellon University and Princeton University to address some limitations of transformer models , especially in processing long sequences.

  5. Derivative-free optimization - Wikipedia

    en.wikipedia.org/wiki/Derivative-free_optimization

    Derivative-free optimization (sometimes referred to as blackbox optimization) is a discipline in mathematical optimization that does not use derivative information in the classical sense to find optimal solutions: Sometimes information about the derivative of the objective function f is unavailable, unreliable or impractical to obtain.

  6. Metaheuristic - Wikipedia

    en.wikipedia.org/wiki/Metaheuristic

    In computer science and mathematical optimization, a metaheuristic is a higher-level procedure or heuristic designed to find, generate, tune, or select a heuristic (partial search algorithm) that may provide a sufficiently good solution to an optimization problem or a machine learning problem, especially with incomplete or imperfect information or limited computation capacity.

  7. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    In 1997, the practical performance benefits from vectorization achievable with such small batches were first explored, [13] paving the way for efficient optimization in machine learning. As of 2023, this mini-batch approach remains the norm for training neural networks, balancing the benefits of stochastic gradient descent with gradient descent .

  8. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent is a method for unconstrained mathematical optimization. It is a first-order iterative algorithm for minimizing a differentiable multivariate function . The idea is to take repeated steps in the opposite direction of the gradient (or approximate gradient) of the function at the current point, because this is the direction of ...

  9. Generalization error - Wikipedia

    en.wikipedia.org/wiki/Generalization_error

    In a learning problem, the goal is to develop a function () that predicts output values for each input datum . The subscript n {\displaystyle n} indicates that the function f n {\displaystyle f_{n}} is developed based on a data set of n {\displaystyle n} data points.