enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    For points inside a spherically symmetric distribution of matter, Newton's shell theorem can be used to find the gravitational force. The theorem tells us how different parts of the mass distribution affect the gravitational force measured at a point located a distance r 0 from the center of the mass distribution: [13]

  3. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details

  4. Action at a distance - Wikipedia

    en.wikipedia.org/wiki/Action_at_a_distance

    This mathematical expression of the force did not imply a cause. Newton considered action-at-a-distance to be an inadequate model for gravity. [6] Newton, in his words, considered action at a distance to be: so great an Absurdity that I believe no Man who has in philosophical Matters a competent Faculty of thinking can ever fall into it. [7]

  5. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    The gravitational constant is a physical constant that is difficult to measure with high accuracy. [7] This is because the gravitational force is an extremely weak force as compared to other fundamental forces at the laboratory scale. [d] In SI units, the CODATA-recommended value of the gravitational constant is: [1]

  6. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  7. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  8. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    A gravitational field is used to explain gravitational phenomena, such as the gravitational force field exerted on another massive body. It has dimension of acceleration (L/T 2) and it is measured in units of newtons per kilogram (N/kg) or, equivalently, in meters per second squared (m/s 2). In its original concept, gravity was a force between ...

  9. Graviton - Wikipedia

    en.wikipedia.org/wiki/Graviton

    If it exists, the graviton is expected to be massless because the gravitational force has a very long range, and appears to propagate at the speed of light. The graviton must be a spin -2 boson because the source of gravitation is the stress–energy tensor , a second-order tensor (compared with electromagnetism 's spin-1 photon , the source of ...