Search results
Results from the WOW.Com Content Network
Multiple choice questions lend themselves to the development of objective assessment items, but without author training, questions can be subjective in nature. Because this style of test does not require a teacher to interpret answers, test-takers are graded purely on their selections, creating a lower likelihood of teacher bias in the results. [8]
For functions in certain classes, the problem of determining: whether two functions are equal, known as the zero-equivalence problem (see Richardson's theorem); [5] the zeroes of a function; whether the indefinite integral of a function is also in the class. [6] Of course, some subclasses of these problems are decidable.
The integers arranged on a number line. An integer is the number zero , a positive natural number (1, 2, 3, . . .), or the negation of a positive natural number (−1, −2, −3, . . .). [1] The negations or additive inverses of the positive natural numbers are referred to as negative integers. [2]
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
For example, the integers are made by adding 0 and negative numbers. The rational numbers add fractions, and the real numbers add infinite decimals. Complex numbers add the square root of −1. This chain of extensions canonically embeds the natural numbers in the other number systems. [6] [7] Natural numbers are studied in different areas of math.
The integers, with the operation of multiplication instead of addition, (,) do not form a group. The associativity and identity axioms are satisfied, but inverses do not exist: for example, a = 2 {\displaystyle a=2} is an integer, but the only solution to the equation a ⋅ b = 1 {\displaystyle a\cdot b=1} in this case is b = 1 2 ...
The sum, difference and product of two algebraic integers is an algebraic integer. In general their quotient is not. Thus the algebraic integers form a ring. This can be shown analogously to the corresponding proof for algebraic numbers, using the integers instead of the rationals .
Number theory is a branch of pure mathematics devoted primarily to the study of the integers and arithmetic functions.German mathematician Carl Friedrich Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the queen of mathematics."