Search results
Results from the WOW.Com Content Network
The surface of the projectile also must be considered: a smooth projectile will face less air resistance than a rough-surfaced one, and irregularities on the surface of a projectile may change its trajectory if they create more drag on one side of the projectile than on the other. However, certain irregularities such as dimples on a golf ball ...
This is, for example, the case with spacecrafts and intercontinental missiles. The trajectory then generalizes (without air resistance) from a parabola to a Kepler-ellipse with one focus at the center of the Earth (shown in fig. 3). The projectile motion then follows Kepler's laws of planetary motion.
English: Trajectories of projectiles launched at different elevation angles and a speed of 10 m/s. A vacuum and a uniform downward gravity field of 10 m/s² is assumed. t = time from launch, T = time of flight, R = range and H = highest point of trajectory (indicated by arrows).
Assume the motion of the projectile is being measured from a free fall frame which happens to be at (x,y) = (0,0) at t = 0. The equation of motion of the projectile in this frame (by the equivalence principle ) would be y = x tan ( θ ) {\displaystyle y=x\tan(\theta )} .
The impact depth of a projectile is the distance it penetrates into a target before coming to a stop. The physicist Sir Isaac Newton first developed this idea to get rough approximations for the impact depth for projectiles traveling at high velocities.
A projectile following a ballistic trajectory has both forward and vertical motion. Forward motion is slowed due to air resistance, and in point mass modeling the vertical motion is dependent on a combination of the elevation angle and gravity. Initially, the projectile is rising with respect to the line of sight or the horizontal sighting plane.
Example photo of the over-penetration of a fragmenting projectile. This class of projectile is designed to break apart on impact whilst being of a construction more akin to that of an expanding bullet. Fragmenting bullets are usually constructed like the hollow-point projectiles described above, but with deeper and larger cavities.
A projectile is any object projected into space (empty or not) by the exertion of a force. Although any object in motion through space (for example a thrown baseball) is a projectile, the term most commonly refers to a weapon. [8] [9] Mathematical equations of motion are used to analyze projectile trajectory. [citation needed]