Search results
Results from the WOW.Com Content Network
A diagram of the proteins found in the active zone. The active zone is present in all chemical synapses examined so far and is present in all animal species. The active zones examined so far have at least two features in common, they all have protein dense material that project from the membrane and tethers synaptic vesicles close to the membrane and they have long filamentous projections ...
The second mechanism by which synaptic vesicles are recycled is known as kiss-and-run fusion. In this case, the synaptic vesicle "kisses" the cellular membrane, opening a small pore for its neurotransmitter payload to be released through, then closes the pore and is recycled back into the cell. [18]
Axon terminals (also called terminal boutons, synaptic boutons, end-feet, or presynaptic terminals) are distal terminations of the branches of an axon. An axon, also called a nerve fiber, is a long, slender projection of a nerve cell that conducts electrical impulses called action potentials away from the neuron's cell body to transmit those ...
Axonal transport, also called axoplasmic transport or axoplasmic flow, is a cellular process responsible for movement of mitochondria, lipids, synaptic vesicles, proteins, and other organelles to and from a neuron's cell body, through the cytoplasm of its axon called the axoplasm. [1]
Alpha-synuclein is a neuronal protein that regulates synaptic vesicle trafficking and subsequent neurotransmitter release. [6] [7] It is abundant in the brain, while smaller amounts are found in the heart, muscle and other tissues. In the brain, alpha-synuclein is found mainly in the axon terminals of presynaptic neurons. [5]
The calyx of Held and endbulb of Held hold vesicles containing glutamate on the presynaptic terminal; the vesicles are released upon stimulation (originating in the cochlea and AVCN). The glutamate then binds to two known glutamate receptors, AMPA-and NMDA receptors, rapidly initiating action potentials in the post-synaptic cell. [12]
Subtypes EAAT1-2 are found in membranes of glial cells [13] (astrocytes, microglia, and oligodendrocytes). However, low levels of EAAT2 are also found in the axon-terminals of hippocampal CA3 pyramidal cells. [14] EAAT2 is responsible for over 90% of glutamate reuptake within the central nervous system (CNS).
Vesicle associated membrane proteins (VAMPs) are a family of SNARE proteins with similar structure, and are mostly involved in vesicle fusion. VAMP1 and VAMP2 proteins known as synaptobrevins are expressed in brain and are constituents of the synaptic vesicles, where they participate in neurotransmitter release .