enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Conversion of scales of temperature - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_scales_of...

    This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...

  3. Fahrenheit - Wikipedia

    en.wikipedia.org/wiki/Fahrenheit

    For an exact conversion between degrees Fahrenheit and Celsius, and kelvins of a specific temperature point, the following formulas can be applied. Here, f is the value in degrees Fahrenheit, c the value in degrees Celsius, and k the value in kelvins: f °F to c °C: c = ⁠ f − 32 / 1.8 ⁠ c °C to f °F: f = c × 1.8 + 32

  4. Scale of temperature - Wikipedia

    en.wikipedia.org/wiki/Scale_of_temperature

    The degree Celsius (°C) can refer to a specific temperature on the Celsius scale as well as a unit to indicate a temperature interval (a difference between two temperatures). From 1744 until 1954, 0 °C was defined as the freezing point of water and 100 °C was defined as the boiling point of water, both at a pressure of one standard atmosphere.

  5. Temperature - Wikipedia

    en.wikipedia.org/wiki/Temperature

    To be suitable for empirical thermometry, a material must have a monotonic relation between hotness and some easily measured state variable, such as pressure or volume, when all other relevant coordinates are fixed. An exceptionally suitable system is the ideal gas, which can provide a temperature scale that matches the absolute Kelvin scale ...

  6. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The degree of dependence between variables X and Y does not depend on the scale on which the variables are expressed. That is, if we are analyzing the relationship between X and Y, most correlation measures are unaffected by transforming X to a + bX and Y to c + dY, where a, b, c, and d are constants (b and d being positive).

  7. Rankine scale - Wikipedia

    en.wikipedia.org/wiki/Rankine_scale

    The Rankine scale is used in engineering systems where heat computations are done using degrees Fahrenheit. [3] The symbol for degrees Rankine is °R [2] (or °Ra if necessary to distinguish it from the Rømer and Réaumur scales). By analogy with the SI unit kelvin, some authors term the unit Rankine, omitting the degree symbol. [4] [5]

  8. Conversion of units - Wikipedia

    en.wikipedia.org/wiki/Conversion_of_units

    An example for which it cannot be used is the conversion between the Celsius scale and the Kelvin scale (or the Fahrenheit scale). Between degrees Celsius and kelvins, there is a constant difference rather than a constant ratio, while between degrees Celsius and degrees Fahrenheit there is neither a constant difference nor a constant ratio.

  9. Stevens's power law - Wikipedia

    en.wikipedia.org/wiki/Stevens's_power_law

    It is often considered to supersede the Weber–Fechner law, which is based on a logarithmic relationship between stimulus and sensation, because the power law describes a wider range of sensory comparisons, down to zero intensity. [1] The theory is named after psychophysicist Stanley Smith Stevens (1906–1973).