enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Another proof, by the Swiss mathematician Leonhard Euler, relies on the fundamental theorem of arithmetic: that every integer has a unique prime factorization.What Euler wrote (not with this modern notation and, unlike modern standards, not restricting the arguments in sums and products to any finite sets of integers) is equivalent to the statement that we have [9]

  3. List of prime numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_prime_numbers

    The primes of the form 2n+1 are the odd primes, including all primes other than 2. Some sequences have alternate names: 4n+1 are Pythagorean primes, 4n+3 are the integer Gaussian primes, and 6n+5 are the Eisenstein primes (with 2 omitted). The classes 10n+d (d = 1, 3, 7, 9) are primes ending in the decimal digit d.

  4. Euclid–Euler theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid–Euler_theorem

    The Euclid–Euler theorem states that an even natural number is perfect if and only if it has the form 2 p−1 M p, where M p is a Mersenne prime. [1] The perfect number 6 comes from p = 2 in this way, as 2 2−1 M 2 = 2 × 3 = 6 , and the Mersenne prime 7 corresponds in the same way to the perfect number 28.

  5. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    It is currently an open problem whether there are infinitely many Mersenne primes and even perfect numbers. [2] [6] The density of Mersenne primes is the subject of the Lenstra–Pomerance–Wagstaff conjecture, which states that the expected number of Mersenne primes less than some given x is (e γ / log 2) × log log x, where e is Euler's ...

  6. Analytic number theory - Wikipedia

    en.wikipedia.org/wiki/Analytic_number_theory

    Euler's proof of the infinity of prime numbers makes use of the divergence of the term at the left hand side for s = 1 (the so-called harmonic series), a purely analytic result. Euler was also the first to use analytical arguments for the purpose of studying properties of integers, specifically by constructing generating power series .

  7. Euclid number - Wikipedia

    en.wikipedia.org/wiki/Euclid_number

    Not all Euclid numbers are prime. E 6 = 13# + 1 = 30031 = 59 × 509 is the first composite Euclid number.. Every Euclid number is congruent to 3 modulo 4 since the primorial of which it is composed is twice the product of only odd primes and thus congruent to 2 modulo 4.

  8. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    This was proved by Leonhard Euler in 1737, [1] and strengthens Euclid's 3rd-century-BC result that there are infinitely many prime numbers and Nicole Oresme's 14th-century proof of the divergence of the sum of the reciprocals of the integers (harmonic series).

  9. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...